416 research outputs found

    A CHR-based Implementation of Known Arc-Consistency

    Full text link
    In classical CLP(FD) systems, domains of variables are completely known at the beginning of the constraint propagation process. However, in systems interacting with an external environment, acquiring the whole domains of variables before the beginning of constraint propagation may cause waste of computation time, or even obsolescence of the acquired data at the time of use. For such cases, the Interactive Constraint Satisfaction Problem (ICSP) model has been proposed as an extension of the CSP model, to make it possible to start constraint propagation even when domains are not fully known, performing acquisition of domain elements only when necessary, and without the need for restarting the propagation after every acquisition. In this paper, we show how a solver for the two sorted CLP language, defined in previous work, to express ICSPs, has been implemented in the Constraint Handling Rules (CHR) language, a declarative language particularly suitable for high level implementation of constraint solvers.Comment: 22 pages, 2 figures, 1 table To appear in Theory and Practice of Logic Programming (TPLP

    Distributed Logic Objects: A Fragment of Rewriting Logic and its Implementation

    Get PDF
    Abstract This paper presents a logic language (called Distributed Logic Objects, DLO for short) that supports objects, messages and inheritance. The operational semantics of the language is given in terms of rewriting rules acting upon the (possibly distributed) state of the system. In this sense, the logic underlying the language is Rewriting Logic. In the paper we discuss the implementation of this language on distributed memory MIMD architectures, and we describe the advantages achieved in terms of flexibility, scalability and load balancing. In more detail, the implementation is obtained by translating logic objects into a concurrent logic language based on multi-head clauses, taking advantage from its distributed implementation on a massively parallel architecture. In the underlying implementation, objects are clusters of processes, objects' state is represented by logical variables, message-passing communication between objects is performed via multi-head clauses, and inheritance is mapped into clause union. Some interesting features such as transparent object migration and intensional messages are easily achieved thanks to the underlying support. In the paper, we also sketch a (direct) distributed implementation supporting the indexing of clauses for single-named methods

    Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles

    Get PDF
    For some truffle species of the Tuber genus, the symbiotic phase is often associated with the presence of an area of scant vegetation, commonly known as the brûlé, around the host tree. Previous metagenomics studies have identified the microorganisms present inside and outside the brûlé of a Tuber melanosporum truffle-ground, but the molecular mechanisms that operate in this ecological niche remain to be clarified. To elucidate the metabolic pathways present in the brûlé, we conducted a metaproteomics analysis on the soil of a characterized truffle-ground and cross-referenced the resulting proteins with a database we constructed, incorporating the metagenomics data for the organisms previously identified in this soil. The soil inside the brûlé contained a larger number of proteins and, surprisingly, more proteins from plants, compared with the soil outside the brûlé. In addition, Fisher’s Exact Tests detected more biological processes inside the brûlé; these processes were related to responses to multiple types of stress. Thus, although the brûlé has a reduced diversity of plant and microbial species, the organisms in the brûlé show strong metabolic activity. Also, the combination of metagenomics and metaproteomics provides a powerful tool to reveal soil functioning

    The incorporation of Radio Frequency Identification Technology in health institutions and the determining aspects of adoption

    Get PDF
    The process of traceability by radio frequency identification system (RFID) is considered one of the biggest contributions of the last years in the health sector. This article aims to study the academic contributions that this technology has brought to the segment in question and the consequent difficulties resulting from the implementation of this technology in the ambit of hospital and outpatient facilities. To carry out this work, we proceeded to survey and literature review in order to select the research related to the topic of RFID in the context of traceability. The data obtained clearly show that the benefits of this tool are numerous, ranging from drug screening to the correct availability of patient data. Although it is imbued with all these advantages, RFID still represents a visible difficulty of insertion in the hospital environment due to economic and security problems in terms of information privacy. However, this new reality is undeniable and its implementation is increasingly present in the medical environment, being a necessity rather than a technological advance
    corecore